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Extended self-similarity in boundary layer turbulence
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It is shown that a lack of isotropy narrows the range of spatial scales where turbulent flows exhibit extended
self-similarity~ESS!, namely, self-scaling of velocity structure functions. This effect holds irrespectively of the
order of the structure functions and explains why early experiments on turbulent boundary layers failed to
observe ESS. The shrinking of the ESS range of scales is well captured by the approximate analytical scaling
functions developed by Sreenivasan and co-workers@Phys. Rev. E48, R33 ~1993!; 48, 5 ~1993!; 48, R3217
~1993!# to fit atmospheric boundary layer data.@S1063-651X~97!04806-X#

PACS number~s!: 47.27.2i, 47.10.1g
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Recently, the existence of an extended form of scale
variance@extended self-similarity~ESS!# in fluid flows has
been pointed out@1#. ESS consists in representing th
pth-order structure function of the velocity fieldSp not in
terms of the space separationr , but as a function of the
third-order~or any other order! structure functionS3 instead.
The rationale behind this idea is that the structure functi
exhibit a generalized form of scaleself-invariancethat holds
even at low Reynolds number, i.e., when dissipative effe
still affect the dynamics of the turbulent flow.

Formally, ESS reads as

Sp~r !.Sq~r !zp /zq, ~1!

whereSp(r )[^dv(r )p& is thepth-order longitudinal veloc-
ity structure function~with r aligned with vW ! and dv(r )
5uvW (x1r )2vW (r )u is the variation of the velocity field take
at two locations a distancer apart. Angular brackets denot
ensemble averaging andzp are the scaling exponents of th
velocity field fluctuations.

Since for most flowsz351, the above relation identifie
S3 as a sort of natural generalized space coordinate cap
of tracking self-similarity even when dissipative effec
would hide it to the ‘‘naive’’ metric represented by the spa
separationr .

According to the Kolmogorov relation@2#

S3~r !52
4

5
^e&r16n

dS2
dr

, ~2!

when molecular viscosity becomes vanishingly small~n→0!,
while turbulent dissipation stays finite~e.0!, S3 becomes
proportional to the space separationr so that ‘‘conven-
tional’’ self-similarity is recovered.

ESS departs from previous scaling theories in at le
three respects@2,3#. ~i! It holds also at moderately low Rey
nolds numbers. This contrasts with ordinary scaling, wh
assumes fully developed turbulence. A theoretical expla
tion of this experimental and numerical evidence is s
awaiting a final assessment@4#. ~ii ! It survives down to
mildly supradissipative scales of the order of 5h, whereh
5n3/4e21/4 is the Kolmogorov length. This contrasts wit
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ordinary scaling, which is known to fade away at mu
larger scales, of the order of 30h or more@5,6#. ~iii ! It shows
anomalous scaling, i.e., scaling exponents departing f
linear non-intermittent behaviorzp5p/3, all the way down
to r55h.

Other numerical and experimental studies supporting E
have also been reported@4#. Nevertheless, some early crit
cism has been raised@7#. In particular, it has been argued th
ESS may bear little relevance to fluid turbulence in that
lation ~1! would break down as soon as the orderp is made
sufficiently high.

In this paper we argue that the failure to observe ESS
boundary layer turbulence is by no means related to h
p’s, but results rather from the lack of isotropy of the flow
i.e., directional effects such as those typically associated w
shear and boundary-layer flows.

Four distinct data sets have been inspected to back up
statement:~i! The jet flow experiment~J, Rel.800! @8#, ~ii !
the numerical simulation of homogeneous incompress
turbulence~H; Rel.38! @9#, ~iii ! the atmospheric boundar
layer experiment~A; Rel.190! @7#, and ~iv! the numerical
simulation of turbulent channel flow~C; Rel.65! @10#. This
sample of data sets allows several cross-checks since it o
all four combinations of experimental (J,A) versus numeri-
cal (H,C) and isotropic (J,H) versus nonisotropic (A,C)
situations.

Full details pertaining to data setsJ,H,A can be found in
the original papers. Therefore, here we shall report o
some information concerning the channel flow simulati
~caseC!.

The simulation is based on a lattice Boltzmann~LB! code,
suitably generalized to accommodate a nonuniform Carte
mesh@10#. The LB code has been run on a moderate reso
tion grid ~643643128! covering a physical length of 920
35123192 lattice units along the streamwise (x), spanwise
(z), and normal-to-wall (y) directions. The spatial extent o
the domain is large enough to sustain the streamwise r
fueling cross-channel turbulence@11#. The simulation spans
2.43105 time steps, corresponding to about 90 streamw
recirculation times.

Data slices are sampled every 50 time steps in the inte
@105,2.43105# at three different elevationsy155 ~inside
6985 © 1997 The American Physical Society
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the viscous sublayer right above the bottom wall!, y1525
~within the transition layer!, andy1550 ~inside the logarith-
mic layer!. This corresponds to about 107 samples per plane.
Herey1 is the normal-to-wall distance normalized with the
shear wall velocityv* and the molecular viscosityn, y1

5yv* /n. The LB code takes about 5 CPU sec/step on
midrange superscalar work-station and performs compe
tively with more consolidated numerical methods for channe
flow turbulence.

In Fig. 1 we report the scaling exponentzp as a function
of p (p<8) for datasetsH,A,C. Our data refer to the plane
at y1525. A preliminary remark is that anisotropic flows
(A,C) are significantly more intermittent than the isotropic

FIG. 1. Scaling exponentzp as a function ofp for homogeneous
isotropic incompressible turbulence (H), channel flow turbulence at
y1525 (C), and atmospheric boundary layer (A).
a
ti-
l

one (H). This is likely to result from the systematic ejectio
of coherent structures carrying conspicuous fluctuations fr
~to! the wall layer to~from! the bulk flow ~see Fig. 2!.

A second remark concerns the excellent match betw
zp
A andzp

C in spite of the~apparently! disparate nature of the
corresponding flows: numerical simulation of channel flow
Rel.65 for caseC and experimental data of boundary lay
turbulence at Rel.190 for caseA.

This indicates that, as far as anomalous scaling is c
cerned, flowsA andC can be regarded as two distinct b
equivalent realizations within the sameclassof flows. Thus
we shall use flowC to understand why flowA was appar-
ently showing no sign of ESS.

To focus on this issue we concentrate on the sixth-or
scaling exponent, namely, the one displaying the best m
between flowsA andC. The conclusion we shall arrive a
applies, however, to the fourth- and eighth-order expone
as well.

We compute the corresponding scaling exponentz6 by
plottingS6 versusS3 . More precisely, we examine the loca
exponentz6 by plotting the local slope

s6~r !5
dS6

dS3
z6 ~3!

as a function ofr , the idea being that departures ofs6(r )
from a constant value would signal the loss of ESS behav

The function S6(r ) is reported in Fig. 3 for all four
datasets under inspection. The numerically computed va
arez6.1.78 for isotropic flows andz6.1.62 for the noniso-
tropic ones, in reasonable agreement with the existing lite
ture @3#.

The way these figures are obtained deserves some c
ment. First, a clear-cut separation between the behavio
isotropic (J,H) versus anisotropic (A,C) datasets is appar
ent. The isotropic datasets follow a flat profile down to sc
separations as low as about 5h ~note that we plotr /h on
two
ed
FIG. 2. Coherent structures ejected from the wall boundary layer in a turbulent channel flow simulation. The normal-to-wall (y) direction
is the ordinate and the spanwise (z) direction is the abscissa. The two pictures represent the isocontours of the streamwise velocity in
planes orthogonal to the mean flow~down into the page! after a few hundred longitudinal recirculation times. The two sections are locat
at the channel inlet~left! and 3

4 channel length~right! along the streamwise direction (x).
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55 6987EXTENDED SELF-SIMILARITY IN BOUNDARY LAYER . . .
abscissas!. This is a typical signature of ESS behavior an
shows that the numerical computation ofzp for these flows
can be improved by using data in the near-dissipative
gime.

Anisotropic datasets, on the contrary, do show signific
departures from a flat profile, i.e., non-ESS behavior, alre
starting atr.25h. This means that the scaling exponents f
these flows must be computed either by using data from
inertial regime alone, above 25h, or by resorting to best-fit
scaling functions smoothly connecting the inertial and dis
pative regimes. These functions have been obtained in@12#
by optimal interpolation of atmospheric boundary layer da
using expressions of the form given by Eq.~6!.

This proves that,even at low p, directional effects~as
opposed to highp’s! are responsible for the ‘‘disappea
ance’’ of ESS behavior. Again the striking feature is th
both anisotropic datasets deviate from ESS along basic
thesamecurve. Let us emphasize that, given the fact that
are dealing with widely distinct Reynolds numbers and fai
subtle observables, namely, derivatives of structure fu
tions, such an agreement can hardly be regarded as a
coincidence.

Returning to ESS, we wish to point out that a lack
isotropy doesnot destroy ESS altogether, but only narrow
its range of scales. In particular, the shortest scale where
is detectable is shifted towards larger scales in the iner
regimer.25h. Backed by the findings described in@13,14#,
we are naturally led to interpret this loss of ESS as a dest
tive interference induced by structures at a typical bound
layer scaled. This is indeed the case for the experimen
data discussed in Ref.@7#, where ESS was probed by usin
data well inside the turbulent boundary layer. This interf

FIG. 3. Computation of the sixth-order scaling exponentz6 from
local slopes ofS6(r ) versusS3(r ). The local slope~ordinate! is
reported as a function ofr15r /h ~abscissa!. Squares,dS6 /dS3

2,
caseJ; diamonds,dS6 /dS3

1.78, caseJ; triangles,dS6 /dS3
1.78, case

H; dashed line,dS6 /dS3
1.62, best-fit scaling function, caseA;

crosses,dS6 /dS3
1.62, caseC. The squares show a manifest depa

ture from that of @2#, i.e., intermittency. CurvesJ,H ~isotropic
flows! display flat behavior~a signature of ESS! down to about 5h,
while for anisotropic flows ESS fades away below 25h. This shows
that a lack of isotropy spoils ESS for low-order structure functio
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ence can be formalized by postulating a double-scaling
pression for the structure functions of the form

Sp~r !5ApU0
pF rL f S rh D G zp

gS rL D xp

, r.r 1 , ~4!

whereAp is a normalization constant,U0 is a typical large-
scale speed, andr 1.5h. By definition, the function
f (r )→1 in the limit r@r 1 in such a way as to recover th
usual Kolmogorov scaling.

Based on the data presented in Fig. 3, the ‘‘interfere
function’’ g(r ) should comply with the requiremen
g(r )→1 for r.L.r 1 , so as to break ESS only for scale
r,L. HereL is a spatial cutoff bearing a~yet unknown!
relation to the boundary layer thicknessd.

It should be noted that the double scaling~4!, while
breaking ESS~for r,L only!, is still compatible with more
general forms of scaling. To this purpose, let us definerela-
tive scaling functions in the formGp[Sp(r )S3(r )

ap, with
ap5zp1xp . Simple algebra yields

Gp~r !5Gq~r !mp3 /mq3, ~5!

wherempq5zpxq2zqxp is the two-point commutator asso
ciated with the scaling exponentszp andxp . Note that the
generic commutator identically vanishes if the scaling ex
nents are linear functions of the indicesp,q. This is why
scaling laws in the form~5! are particularly suited to probe
universal features of intermittent phenomena.

Expression~5! is nothing but a generic instance of th
so-called generalized ESS~GESS! recently introduced by
Benzi, Struglia, and Tripiccione in the context of anisotrop
shear flows@13#. In particular, GESS is recovered from E
~5! whenever the interference fieldg(r ) scales nonintermit-
tently, i.e.,xp5px3/3. Indeed, evidence of GESS has be
reported for a variety of flows, including those discussed
this paper. It is worth noting that the analytical scaling fun
tions developed in@7,15# to interpret boundary layer exper
ment also fall within the class described by expression~4!. In
fact, these scaling functions can be expressed in the form

Fp~r !5~r /h!2p@11Bp~r /h!2#2Cp, ~6!

whereCp52p2zp , and recall that the constantsBp , con-
trolling the viscous-to-inertial transition scale, are nearly
dependent ofp (1/Bp

1/2.11). In view of this, it comes as no
surprise that these analytical scaling functions, although c
brated for the atmospheric boundary layer experiment, w
pretty well also for the interpretation of our turbulent chann
data.

Summarizing, we have presented numerical and exp
mental evidence supporting the idea that a lack of isotro
shrinks the range of scales where ESS can be detected.
effect takes place irrespectively of the order of the struct
functions under inspection and is captured well by~approxi-
mate! analytical scaling functions smoothly connecting t
inertial and dissipative regimes.

We wish to acknowledge Professor R. Piva for seve
illuminating discussions.
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