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Extended self-similarity in boundary layer turbulence
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It is shown that a lack of isotropy narrows the range of spatial scales where turbulent flows exhibit extended
self-similarity (ESS, namely, self-scaling of velocity structure functions. This effect holds irrespectively of the
order of the structure functions and explains why early experiments on turbulent boundary layers failed to
observe ESS. The shrinking of the ESS range of scales is well captured by the approximate analytical scaling
functions developed by Sreenivasan and co-workehs/s. Rev. E48, R33(1993; 48, 5 (1993; 48, R3217
(1993] to fit atmospheric boundary layer daf&1063-651X97)04806-X

PACS numbeps): 47.27—i, 47.10+g

Recently, the existence of an extended form of scale inerdinary scaling, which is known to fade away at much
variance[extended self-similarit{ESS] in fluid flows has larger scales, of the order of 3®r more[5,6]. (iii ) It shows
been pointed oufl]. ESS consists in representing the anomalous scaling, i.e., scaling exponents departing from

pth-order structure function of the velocity fiefdl, not in  linear non-intermittent behaviaf,=p/3, all the way down
terms of the space separation but as a function of the tor=5%.
third-order(or any other orderstructure functiors; instead. Other numerical and experimental studies supporting ESS

The rationale behind this idea is that the structure functionfiave also been report¢d]. Nevertheless, some early criti-
exhibit a generalized form of scaself-invariancethat holds  cism has been raiséd]. In particular, it has been argued that
even at low Reynolds number, i.e., when dissipative effect&ESS may bear little relevance to fluid turbulence in that re-

still affect the dynamics of the turbulent flow. lation (1) would break down as soon as the orgeis made
Formally, ESS reads as sufficiently high.
In this paper we argue that the failure to observe ESS in
Sp(r)=Sq(r)% 4, (1) boundary layer turbulence is by no means related to high

p’s, but results rather from the lack of isotropy of the flow,
where S,(r)=(dv(r)P) is the pth-order longitudinal veloc- e, directional effects such as those typically associated with
ity structure function(with r aligned with o) and Sv(r) shear and boundary-layer flows.
=[g(x+r)—uv(r)| is the variation of the velocity field taken  Four distinct data sets have been inspected to back up this
at two locations a distanaeapart. Angular brackets denote statement(i) The jet flow experimentJ, Re,=800) [8], (ii)
ensemble averaging arig are the scaling exponents of the the numerical simulation of homogeneous incompressible
velocity field fluctuations. turbulence(H; Re,=38) [9], (iii) the atmospheric boundary

Since for most flows's=1, the above relation identifies |ayer experimentA; Re,=190) [7], and (iv) the numerical
S; as a sort of natural generalized space coordinate capab$mulation of turbulent channel flo¢C; Re,=65) [10]. This
of tracking self-similarity even when dissipative effects sample of data sets allows several cross-checks since it offers
would h_ide it to the “naive” metric represented by the spaceall four combinations of experimental (A) versus numeri-
separatiorr. cal (H,C) and isotropic §,H) versus nonisotropicA,C)
According to the Kolmogorov relatiof2] situations.
Full details pertaining to data seisH,A can be found in
Sg(r)=—f(e>r+6vd—sz @) the original papers. Therefore, here we shall report only
5 dr’ some information concerning the channel flow simulation

(caseC).
when molecular viscosity becomes vanishingly smai-0), The simulation is based on a lattice BoltzmahB) code,
while turbulent dissipation stays finite>0), S; becomes suitably generalized to accommodate a nonuniform Cartesian
proportional to the space separationso that “conven- mesh[10]. The LB code has been run on a moderate resolu-
tional” self-similarity is recovered. tion grid (64X64x128) covering a physical length of 920

ESS departs from previous scaling theories in at leask512x192 lattice units along the streamwise) ( spanwise
three respectf2,3]. (i) It holds also at moderately low Rey- (z), and normal-to-wall ¥) directions. The spatial extent of
nolds numbers. This contrasts with ordinary scaling, whichthe domain is large enough to sustain the streamwise rolls
assumes fully developed turbulence. A theoretical explanafueling cross-channel turbulen¢gl]. The simulation spans
tion of this experimental and numerical evidence is still2.4x 10° time steps, corresponding to about 90 streamwise
awaiting a final assessmefd]. (i) It survives down to recirculation times.
mildly supradissipative scales of the order af, 3vhere » Data slices are sampled every 50 time steps in the interval

=134~ 14 is the Kolmogorov length. This contrasts with [10°,2.4x 10°] at three different elevationg™ =5 (inside
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o5 : : : : . , — one H). This is likely to res.ult from the systematic gjection
of coherent structures carrying conspicuous fluctuations from
(to) the wall layer to(from) the bulk flow(see Fig. 2
s b S g - A second remark concerns the excellent match between
{jﬁ and gg in spite of the(apparently disparate nature of the

corresponding flows: numerical simulation of channel flow at
Re =65 for caseC and experimental data of boundary layer
turbulence at Rg=190 for caseA.

This indicates that, as far as anomalous scaling is con-
L Hﬁ" i cerned, flowsA and C can be regarded as two distinct but

Ghannel Turbulence ) © equivalent realizations within the sarsklssof flows. Thus

g ‘Hom. Turbulence (H) + we shall use flonC to understand why flowA was appar-
'Atm. Turbulence (AY O | ently showing no sign of ESS.

-1 K4 o To focus on this issue we concentrate on the sixth-order
scaling exponent, namely, the one displaying the best match
. ! L ! L ! ! ! L between flowsA and C. The conclusion we shall arrive at
0 1 2 3 4 5 6 7 8 9 applies, however, to the fourth- and eighth-order exponents

P as well.
We compute the corresponding scaling expongnby
FIG. 1. Scaling exponert, as a function op for homogeneous ~ PIOttiNg S¢ versusS;. More precisely, we examine the local
isotropic incompressible turbulencel), channel flow turbulence at  €XPOnents by plotting the local slope
y*=25 (C), and atmospheric boundary layeX)(

15 | .

Scaling exponent
oF

05

Se(r)=—%
the viscous sublayer right above the bottom yall" =25 o) dsie 3
(within the transition layer andy * =50 (inside the logarith-
mic layep. This corresponds to about 16amples per plane.
Herey™ is the normal-to-wall distance normalized with the The function S(r) is reported in Fig. 3 for all four

shea: wall velocityp* and the molecular viscosity, y*  yatasets under inspection. The numerically computed values
=yv*/v. The LB code takes about 5 CPU sec/step on ge s 1 78 for isotropic flows andg=1.62 for the noniso-
midrange superscalar work-station and performs competiyopic ones, in reasonable agreement with the existing litera-
tively with more consolidated numerical methods for channekyre [3].
flow turbulence. The way these figures are obtained deserves some com-
In Fig. 1 we report the scaling exponeff as a function  ment. First, a clear-cut separation between the behavior of
of p (p=<8) for dataset$1,A,C. Our data refer to the plane isotropic (J,H) versus anisotropicA,C) datasets is appar-
aty"=25. A preliminary remark is that anisotropic flows ent. The isotropic datasets follow a flat profile down to scale
(A,C) are significantly more intermittent than the isotropic separations as low as abouy %note that we plotr/» on

as a function ofr, the idea being that departures (r)
from a constant value would signal the loss of ESS behavior.

FIG. 2. Coherent structures ejected from the wall boundary layer in a turbulent channel flow simulation. The normalstpdittion
is the ordinate and the spanwisg®) direction is the abscissa. The two pictures represent the isocontours of the streamwise velocity in two
planes orthogonal to the mean flgdown into the pageafter a few hundred longitudinal recirculation times. The two sections are located
at the channel inletieft) and 2 channel lengttright) along the streamwise direction)(
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ence can be formalized by postulating a double-scaling ex-
° pression for the structure functions of the form

6 T T T T T T

o Jot Flow (J)’
"Atm. Turbulence (A) ----
5 g ’Hom.Tuf‘lju:anlce (8; S ] ) r r {p r\Xp
et Flow — C o e =
o "Channel Turbulence (Cy X Sp(r) APUO |_f 7 g A v =Ty, (4)

whereA,, is a normalization constant], is a typical large-

- = s scale speed, and;=57%. By definition, the function

a f(r)—1 in the limitr>r, in such a way as to recover the

= usual Kolmogorov scaling.
o Based on the data presented in Fig. 3, the “interference

Hogg function” g(r) should comply with the requirement

1 Xgaaé°°°°°°?§§§§§-%&E@§@@@@@§§< i} g(r)—1 forr>A>r,, so as to break ESS only for scales

w r<A. Here A is a spatial cutoff bearing &et unknown

o L—==="1 L L L ' ' ' relation to the boundary layer thickne8s

0 5 10 v 20 25 30 35 It should be noted that the double scali4), while

breaking ESSfor r <A only), is still compatible with more

general forms of scaling. To this purpose, let us defala-

tive scaling functions in the fornG,=S,(r)Ss(r)“r, with

ap={p+ xp. Simple algebra yields

Local Slope
w

=]
o
DE’E!

FIG. 3. Computation of the sixth-order scaling expongnfrom
local slopes ofSg(r) versusS;(r). The local slopelordinate is
reported as a function af* =r/7 (abscissa Squaresdse;/d%,
caseJ; diamondsdS;/dS; ™8, casel; triangles,dS;/dS: 78, case )
H; dashed line,dS;/dSy®, bestit scaling function, casé; Gp(r)=Gq(r)*p3'#as, ®
crossesdS; /dSy®?, caseC. The squares show a manifest depar-
ture from that of[2], i.e., intermittency. Curves,H (isotropic ~ Where wpq={pxq— {qXp is the two-point commutator asso-
flows) display flat behaviofa signature of E9Sdown to about %, ciated with the scaling exponen{g and x,. Note that the
while for anisotropic flows ESS fades away below25his shows generic commutator identically vanishes if the scaling expo-
that a lack of isotropy spoils ESS for low-order structure functions.nents are linear functions of the indicesg. This is why

scaling laws in the forn{5) are particularly suited to probe
] o . ] ] universal features of intermittent phenomena.
abscissgs This is a typical signature of ESS behavior and  Expression(5) is nothing but a generic instance of the
shows that the numerical computation &ffor these flows  go-called generalized ESGSESS recently introduced by
can be improved by using data in the near-dissipative regenzi, Struglia, and Tripiccione in the context of anisotropic
gime.. _ ~ shear flowq13]. In particular, GESS is recovered from Eq.

Anisotropic datasets, on the contrary, do show significants) whenever the interference fiety(r) scales nonintermit-
departures from a flat profile, i.e., non-ESS behavior, alreadyanty, i.e.,x,=Pxa/3. Indeed, evidence of GESS has been
starting arr =25. This means that the scaling exponents forreported for a variety of flows, including those discussed in
these flows must be computed either by using data from theyis paper. It is worth noting that the analytical scaling func-
inertial regime alone, above Z5or by resorting to best-fit  tions developed ifi7,15] to interpret boundary layer experi-
scaling functions smoothly connecting the inertial and dissient also fall within the class described by expres¢bnin
pative regimes. These functions have been obtaindd2h  fact, these scaling functions can be expressed in the form
by optimal interpolation of atmospheric boundary layer data
using expressions of the form given by E@). Fo(r)=(r/7)%[1+B,(r/7)?] C» 6)

This proves thateven at low p directional effects(as P P '
opposed to highp’s) are responsible for the “disappear-
ance” qf ESS.behawor. Agal_n the striking feature is Fhattrolling the viscous-to-inertial transition scale, are nearly in-
both anisotropic datasets deviate from ESS along bas'ca"éiependent ob (1/8,1)’2: 11). In view of this, it comes as no

the samecurve. Let us emphasize that, given the fact that Wesurprise that these analytical scaling functions, although cali-

are dealing with widely distinct Re_yno_lds numbers and fairlybrated for the atmospheric boundary layer experiment, work
subtle observables, namely, derivatives of structure func- '

tions, such an agreement can hardly be regarded as a megé?tty well also for the interpretation of our turbulent channel
coincidence.

Returning to ESS, we wish to point out that a lack of
isotropy doesot destroy ESS altogether, but only narrows

whereC,=2p—{,, and recall that the constang,, con-

Summarizing, we have presented numerical and experi-
mental evidence supporting the idea that a lack of isotropy

) ; rinks the range of scales where ESS can be detected. This
its range of scales. In particular, the shortest scale where E

is detectable is shifted towards larger scales in the inertia? fect takes place irrespectively of the order of the structure

: - . , unctions under inspection and is captured well(Agproxi-
regimer = 257. Backed_ by the flnd_lngs described|it3,14), mate analytical scaling functions smoothly connecting the
we are naturally led to interpret this loss of ESS as a deStru%ertial and dissipative regimes
tive interference induced by structures at a typical boundary '
layer scaled. This is indeed the case for the experimental
data discussed in Ré€f7], where ESS was probed by using We wish to acknowledge Professor R. Piva for several

data well inside the turbulent boundary layer. This interfer-illuminating discussions.
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